Веб-аналитика: как объединить данные, выбрать атрибуцию и не сойти с ума

Подробный гайд на раскрывает основы веб-аналитики — от сбора данных до моделей атрибуции. Статья объясняет, как использовать Analytics, Яндекс.Метрику и open source-решения для оценки эффективности маркетинга и построения сквозной аналитики. Описаны плюсы и минусы клиентского и серверного сбора данных, а также роль CRM, рекламных кабинетов и таблиц в аналитической инфраструктуре.

Отдельный акцент сделан на сравнении моделей атрибуции в GA4 и Метрике: data-driven, последний клик, первый источник и другие подходы. Подробно разобраны UTM-метки, логика построения пользовательских идентификаторов (Client ID, User ID) и сложности объединения данных из разных систем (CRM, аналитика, реклама). Важный вывод — необходимость учитывать ограничения платформ, синхронизировать идентификаторы и избегать ложных инсайтов из-за рассинхронизации данных или человеческого фактора.

Читайте также

  1. Как единый подход к кампаниям помогает брендам превышать среднерыночные показатели
  2. Руководство по передаче офлайн-конверсий в Яндекс Директ
  3. Данные Patchworks: активность в ecommerce достигла пика в начале декабря
  4. Bounce Rate в веб-дизайне: как удержать пользователей на сайте
  5. Как в Авито используют split-тесты для оценки эффективности рекламных алгоритмов
← Назад в лентуЧитать оригинал →
✈️ Подписывайтесь на мой Telegram-канал — там еще больше интересного про AdTech, MarTech, AI и многое другое!