Роботы учатся видеть мир нашими глазами, пишут код и создают игры: топ-10 ИИ-исследований за май

Майский обзор ИИ-исследований включает 10 ключевых разработок, меняющих подход к обучению, использованию и тестированию моделей. Проект INTELLECT-2 показал, что крупные языковые модели можно эффективно обучать децентрализованно через распределённые сети с методами PRIME-RL, SHARDCAST и TOPLOC, превзойдя лидеров среди открытых 32B LLM в математике и программировании за 2 недели. Платформа Hunyuan-Game использует диффузионные трансформеры и миллиарды игровых ассетов для генерации высококачественных ресурсов по текстовому описанию. Новый бенчмарк gg-bench измеряет обобщающую способность LLM через создание и освоение новых стратегических игр, а VideoGameBench проверяет навыки реального времени на играх 90-х (лучший результат — 0,48%). В программировании набирают популярность гибридные подходы vibe coding и agentic coding, а система WILLIAMT исправляет до 73,5% уязвимостей по $0,0026 за баг. Метод Synthetic Data RL повышает точность моделей в узких областях до 92% за счёт синтетических данных. EgoZero обучает роботов бытовым действиям по видео с умных очков (успех ~70%), а MetaMind улучшает социальный интеллект ИИ на 36%. Минималистичный агент Alita самостоятельно создаёт инструменты и достигает 75% успеха на GAIA, демонстрируя потенциал саморазвивающихся архитектур.

Ключевые инсайты из новости (по версии ChatGPT)
  • Децентрализованное RL-обучение LLM: Проект INTELLECT-2 продемонстрировал возможность обучения крупных языковых моделей без централизованных дата-центров, используя распределённые вычислительные ресурсы участников сети. Ключевые технологии — PRIME-RL (асинхронное обучение), SHARDCAST (ускоренная передача данных) и TOPLOC (валидация на недоверенных узлах) обеспечивают стабильность и эффективность обучения.
    [AI/Обучение моделей]
Для получения полного доступа оформите подписку PubMag PRO.
Зарегистрированные пользователи видят только два тезиса.
Зарегистрироваться
Инсайты автоматически генерируются с помощью искусственного интеллекта на основе текста статьи.
← Назад в лентуЧитать оригинал →
✈️ Подписывайтесь на мой Telegram-канал — там еще больше интересного про AdTech, MarTech, AI и многое другое!