Когда ИИ не понимает бизнес-контексты
- Компании внедряют ИИ-ассистентов, которые автоматически пишут SQL-запросы и помогают менеджерам готовить отчеты.
- В тексте приводится бенчмарк Spider 2.0: точность преобразования естественного языка в SQL на реальных схемах около 59%, а при усложнении задач падает до 40%.
- Бизнес-логика и «корпоративная память» редко доступны модели: они находятся во внутренних артефактах вроде Jira-тикетов, презентаций, баз и схем.
- Отмечено, что точность проседает на задачах, близких к реальным процессам: многошаговые запросы, джойны между незнакомыми схемами, разные SQL-диалекты и трансформации в DBT.
- Как инженерный ответ описаны подходы на базе управляемого контекста, включая RAG с подгрузкой DDL, схем, моделей DBT и выборок строк, а также поиск по каталогам и хранилищам метрик.
- Для снижения неоднозначности и ошибок упоминаются многоуровневая память, структурные ограничения для SQL и процесс обратной связи с оценкой по реальным KPI.
Почему это важно: Когда модель не понимает внутренние определения и правила, она выдаёт почти правильные результаты, которые превращаются в часы отладки и проверки. В тексте подчёркивается, что по мере приближения к продакшн-схемам и реальным процессам надёжность падает, а риски становятся прикладными — для отчетности и управленческих решений.
На что обратить внимание: В статье акцентируется, что полезность ассистента зависит от того, какие источники считаются «истиной» и как описаны таблицы, метрики и связи между данными. Отдельно подчёркивается работа только с контролируемыми источниками данных и соблюдение требований безопасности, иначе преимущества могут быть нивелированы рисками приватности и несоответствием требованиям регуляторов. Также описанная архитектура подразумевает следующий шаг в виде пилота и последующего измерения эффекта на реальных сценариях и метриках качества.
Читайте также
- Надёжность NL2SQL на реальных схемах: ориентиры Spider 2.0: Для задач преобразования естественного языка в SQL на реалистичных схемах точность в бенчмарке Spider 2.0 описана на уровне около 59%, а при усложнении падает до 40%. Это полезно воспринимать как практический ориентир: в продакшн-контуре «почти правильные» запросы часто превращаются в затраты на проверку и разбор логики.
[Качество и риски AI-ассистентов]
Зарегистрированные пользователи видят только два тезиса.
Зарегистрироваться
Хабр
Статья разбирает, почему ИИ-ассистенты уверенно пишут SQL и помогают с отчетами, но часто теряются в бизнес-контексте компании. Главный вывод: проблема решается не «другой моделью», а архитектурой вокруг неё.