RAG и Ragas: как обучить AI-помощника без галлюцинаций

Cloud.ru построил AI-помощника по своим онлайн-курсам на архитектуре RAG, чтобы разгрузить кураторов и давать ответы на вопросы слушателей в реальном времени. Контент курсов и документация хранятся в S3, индексируются в Qdrant, поверх работает гибридный поиск (OpenSearch + эмбеддинги) с Qwen3-Embedding-0.6B и Qwen3-Reranker-0.6B, а ответы генерирует GigaChat-2-Max; безопасность усиливают GuardRails.

Качество системы оценивают с помощью Ragas и графа знаний: инструмент автоматически генерирует вопросы и проверяет ответы по метрикам context precision/recall, faithfulness и answer relevancy для разных типов запросов (single-hop, multi-hop, конкретных и абстрактных). Авторы подчёркивают важность адаптации метрик, корректного русскоязычного сегментатора, few-shot-примеров для промптов и аккуратного описания function calling.

По итогам внедрения 57% слушателей отметили, что AI-агент помог им быстрее проходить курс, CSI вырос на 6%, а completion rate увеличился в 1,5 раза — при том, что помощник работает только на этапе изучения материалов и не вмешивается в тестирование и оценку.

Читайте также

  1. Превращаем любой текст в модель знаний — и почему это удобно
  2. Как создать мощного ИИ-агента с долговременной памятью на базе LangGraph, RAG и веб-скрапера
  3. Личное облако на Proxmox: нейросети, LLM и эмбеддинги
  4. Как за вечер собрать простую RAG-систему на PHP с Neuron AI
  5. «Сбер» по совету ИИ сократит до 20% персонала
Ключевые инсайты из новости (по версии ChatGPT)
  • Референс-архитектура RAG-помощника в корпоративной инфраструктуре: Cloud.ru описывает рабочий стек RAG-помощника: S3 как хранилище сырого контента (курсы и документация), Qdrant как векторная БД, OpenSearch для полнотекстового поиска, связка эмбеддера и реранкера Qwen3 и генеративная модель GigaChat-2-Max. Безопасность усиливается GuardRails, который фильтрует промпт-инъекции и «ломающие» запросы. Это пример полноценно онлайновой архитектуры, пригодной для внутренних знаний крупных компаний.
    [архитектура RAG-систем и AI-помощников]
Для получения полного доступа оформите подписку PubMag PRO.
Зарегистрированные пользователи видят только два тезиса.
Зарегистрироваться
Инсайты автоматически генерируются с помощью искусственного интеллекта на основе текста статьи.
← Назад в лентуЧитать оригинал →
✈️ Подписывайтесь на мой Telegram-канал — там еще больше интересного про AdTech, MarTech, AI и многое другое!